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ABSTRACT 
 

Population Aging, Elderly Migration and Education Spending: 
Intergenerational Conflict Revisited*

 
Elderly have been increasingly targeted as a group to enhance economic development and 
the tax base in communities. While recent literature on elderly migration tends to focus on 
how elderly migration patterns are influenced by state fiscal variables, the reverse effect from 
elderly population on fiscal variables is very plausible. This paper reexamines the 
intergenerational conflict in education financing using U.S. state and county level data. We 
analyze how preferences for education spending might vary across different elderly age 
groups, an analysis that has not been explored before. We estimate the impact of elderly 
population and elderly migration rates on education spending using panel data and spatial 
econometric techniques. Our results broadly support the presence of intergenerational 
conflict and age heterogeneity in preferences for education spending among elderly migrants. 
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1.  Introduction 
 
Retirees are becoming increasingly important for state and local economies and budgets. While 

retirees pose significant fiscal challenges to state and local governments, they may also offer 

opportunities to enhance local economic development. A major factor in the rise of their 

importance is the rapid increase in the number of retired elderly in the U.S. population and its 

fiscal and economic implications. An important consequence of population aging is increasing 

fiscal pressure to spend on social security, health care, and other welfare programs that benefit 

the elderly at the expense of other programs that benefit the young. Population aging can affect 

spending on education through the enhanced political power of the elderly as a voting group. 

Slavov (2006) demonstrates that government expenditures tend to be biased in favor the elderly 

because they are easier to sustain politically across a broad class of majoritarian institutions due 

to asymmetric distribution of benefits that generate broad political support for large transfers to 

older individuals. Since education is a major input to human capital accumulation, aging can 

have a significant negative impact on future economic growth. Recent studies by Gradstein and 

Kaganovich (2004), Holtz-Eakin, Lovely and Tosun (2004), Tosun (2005), Tosun (2008) as well 

as Razin, Sadka, and Swagel (2002) examine the growth implications of the intergenerational 

conflict in education spending, but lead to different conclusions and warrant empirical 

investigation. 

This study presents new evidence on the relationship between education spending and 

population aging building on the original finding by James Poterba (1997) that state K-12 

education spending is negatively related by the share of retirees in state population. Poterba 

(1998) argues that the link between population aging and public education is theoretically 

ambiguous and has to be resolved empirically, but the empirical consensus has not yet emerged. 

For instance, Ladd and Murray (2001) do not find any evidence in support of intergenerational 
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conflict in education spending at the county level, while Harris et al. (2001) do find such 

evidence in school district data. While some studies argue and present evidence that the elderly 

have a strong dislike for education spending (Brunori, 2003; Button, 1992 and Reeder and 

Glasgow, 1990), others do not find strong evidence of such relationship (Rosenbaum and Button, 

1989; Button and Rosenbaum, 1989). By examining the voting behavior in tax referenda in six 

Florida counties, for instance, Button (1992) concludes that intergenerational conflict is very 

prevalent in education-related issues. On the other hand, Deller and Walzer (1993) find a much 

weaker evidence of such generational conflict in a survey of residents in rural Illinois by 

showing that retirees support local education spending, albeit at a lower level than non-retirees. 

Moreover, the 2004 AARP Aging American Voter Survey indicates that a strong majority of 

older people support federal government’s responsibility in educating young people.1  

 The lack of empirical consensus on the intergenerational conflict may be the result of 

complications created by reverse or simultaneous causality where the elderly can influence 

government policy and also be influenced by it in their migration decisions.2 Farnham and Sevak 

(2002) provide evidence from the Health and Retirement Study (HRS) that households move to 

areas with lower per pupil expenditures and reduce their property tax liability by $115 on 

average. Newbold (1996) investigates the determinants of elderly interstate migration from 1985 

to 1990 and finds that onward migrants are more sensitive to physical amenities than Medicare 

expenditures, for example. Gale and Heath (2000) find that elderly prefer states where wage 

earners carry more of the burden in financing publicly provided goods. On the other hand, 

Conway and Rork (2004, 2006) find that elderly migration is likely to cause or influence changes 

                                                           
1 However, the survey did not have a similar question for state and local governments. The same survey shows that a 
large group of older people became more conservative in issues such as bureaucracy and taxes. See AARP (2004) 
for a summary of findings from this survey. 
2 Studies by Cebula (1990), Conway and Houtenville (1998, 2001), Conway and Rork (2004, 2006), and Farnham 
and Sevak (2002) explore these reverse causality issues. 
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in state tax policy rather than be influenced by them. Similarly, Voss et al. (1988) determine that 

state “death” taxes do not contributed to elderly out-migration. 

The empirical evidence on the intergenerational conflict is further complicated by the fact 

that it is not only the size of the elderly population but also their migration patterns and age 

heterogeneity in preferences that could have different implications for education spending. 

According to the U.S. Census report by He and Schachter (2003) on migration patterns of the 

elderly between 1995 and 2000, the mobility of older population differ significantly by age, sex 

and region. For example, the young old (people 65 to 74 years old) were more likely to move to 

a different state compared to the older old, particularly the oldest old (people 85 years and over). 

In addition the population 55 to 64 years old had mobility patterns similar to the young old group 

(people 65 to 74 years old). Hence, it is particularly useful to examine the migration effects of 

this near retirement group (some already retired) in addition to the older age groups as we do in 

this paper. 

By addressing the problem of reverse causality, differentiating between migration and the 

share of elderly population, and controlling for age heterogeneity in preferences, this study aims 

to provide more authoritative evidence on the intergenerational conflict first examined by 

Poterba (1997). We use Conway and Rork’s (2006) panel-data approach in addressing the 

reverse causality problem that complicates the estimation of the relationship between state fiscal 

policy and elderly migration. In addition to using a longitudinal panel of the U.S. states, we also 

test for the presence of intergenerational conflict using county-level data and find similar 

evidence. Controlling for spatial autocorrelation at the county level, we also show how the effect 

of retiree migration on education spending varies across different age groups of retirees.  

The paper is structured as follows. The next section briefly discusses possible taxing and 

spending changes amid elderly in-migration. The paper then discusses the empirical strategy and 
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methodology in section 3. Section 4 presents results from state and county level regressions. The 

last section contains our concluding remarks. 

 

2.  Rising Old-Age Dependency and Preferred Taxing and Spending 

One important consequence of substantial elderly in-migration is the increasing political power 

of the elderly. Table 1 gives an overview of the political weight of elderly as a voting group 

using voting statistics compiled by the U.S. Census Bureau. The age group 18 to 24 had the 

fewest registered voters (38.2 percent) and the least number to vote (17.2 percent), in 2002. With 

an increase in age, the percentage registered and voted also increased. Sixty-one percent over 

eighteen years of age were registered to vote and 42.3 percent actually voted in 2002. Age 

groups below 45 years of age fell below this average in both categories. However, in the 45 to 54 

years category there are 67.4 percent registered and 50.2 percent voted. The largest percent 

registered was in the 75 to 84 age category with 76.9 percent, and this group also had the second 

highest turnout with 61.9 percent voting in 2002. The 65 to 74 age category had the highest 

voting percentage with 63.1 percent. 

To illustrate the possible impact of the political power of the elderly on education 

spending, one can use a median voter model within an overlapping generations growth model. At 

each period of the model, a cohort of size Nt is born. Then total population in each period is 

 where tt NN +−1 ( ) 11t tN −= + η tN  and tη  is the population growth rate at period t. Given this, 

the median voter is defined by 

( ) 1
1

0

,
2

m
t

t t
N NN N f a da −

−
+

+ =∫ t  (1) 

where a is the ability and m is the ability level of the median voter. This in turn can be used to 

show 
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which is positive under a uniform ability distribution. With more elderly in the population, the 

median voter becomes a person with lower ability and the preferred tax rate and education 

spending of the median voter is lower. The intuition behind this is as follows: as the elderly 

population increases through in-migration, old-age dependency ratio rises and older people will 

need fewer young voters to form a majority. These young voters are the ones at the lower end of 

the ability distribution. They prefer lower taxes and spending than higher ability counterparts 

because their return from public education is lower. While we don’t discuss the other aspects of 

the model, Tosun (2003), Holtz-Eakin, Lovely and Tosun (2004) and Tosun (2008) show that 

this political economy effect is weighed against the growth effect which exerts a reverse positive 

pressure on the government spending on education through a positive income elasticity of 

government spending. Hence, in an overlapping-generations growth model with a political 

process for taxation and education spending, the effect of elderly migrants on education spending 

is ambiguous and must be resolved empirically. 

 

3.  Empirical Methodology 
 
In this section, we examine the empirical evidence on the intergenerational conflict in education 

financing and expand previous empirical methodology to account for elderly migration and 

spatial dependence. We follow Poterba’s (1997) basic empirical model specification for the state 

and county level regressions, but we improve upon Poterba’s analysis by utilizing panel data and 

spatial econometric techniques. In addition, we are able to examine richer elderly migration data 

at the county level due to available data for several elderly age groups from 55 years old and 

over. We use Poterba’s (1997) basic empirical model specification for the state level regressions: 
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Where ED/CHILD is the logarithm of per pupil government spending on K-12 education, Y is 

the logarithm of real state per capita personal income, KID is the logarithm of the state 

population shares aged 0 to 15, OLD is the logarithm of the state population shares aged 65 and 

over, OWNERS is the logarithm of the population share that owns homes, NONWHITE is the 

logarithm of the population share that is nonwhite, and URBAN is the logarithm of the 

population share that lives in urban areas.3 We extend Poterba’s (1997) basic model to include 

the logarithms of in-migration and out-migration rates for people 65 years old and over 

(INMIG65 and OUTMIG65, respectively). These variables are calculated as total in-migrants or 

out-migrants divided by total state population in a given year. Our state dataset is a balanced 

panel that includes observations for each state (except for Alaska and Hawaii) in years 1970, 

1980, 1990, and 2000 amounting to 192 observations in total. Nominal values of per capita 

personal income and education spending per pupil are deflated using GDP deflator obtained from 

the Bureau of Economic Analysis. Tables 2 and 3 provide the descriptive statistics for the state 

and county level data used in our regressions. Table 4 gives the data sources and web links for 

the data. 

Due to significant correlation between KID, OLD, and Y variables at the state level, their 

coefficient estimates are likely to be biased and difficult to infer from. Moreover, Conway and 

Rork (2006) find evidence suggesting that elderly migration determines state tax policy and not 

the other way around. For this and other reasons, we believe that elderly migration variables are 

better suited than elderly population shares for capturing the effect of intergenerational 

competition on education spending. Thus, we reexamine the intergenerational conflict by 

                                                           
3 Due to the data availability constraints, our database omits the federal aid and poverty variables used in Poterba’s 
(1997) regressions. Also, our KID variable is different from Poterba’s variable defined as the logarithms of the state 

 6



   

including elderly migration rates in both state and county regressions. Like Poterba (1997), we 

expect the OWNERS variable to capture the after-tax price of education spending and the 

URBAN variable to capture the differences in the cost of delivering school services as a function 

of the spatial distribution of population or potential taste differences for public spending between 

urban and rural residents. Poterba (1997) points out the difficulty of interpreting the coefficient 

for NONWHITE because it may proxy not only for the racial mix effect on education spending 

but also for higher moments of the income distribution. 

We use the same basic econometric model as shown in equation (3) in our county level 

regressions as well. However, there are a few important differences about the county dataset that 

are worth mentioning. Unlike the state dataset, the county dataset is just a cross-section of 

counties from 48 continental United States and the District of Columbia where all variables are 

the same as in the state dataset except for a more detailed age-group breakdown of elderly 

migration rates. Our elderly migrants are grouped in the following age categories: 55-64, 65-74, 

75-84, and 85 and older. Our elderly in and out migration rates are calculated as in-migration or 

out-migration flows during 1995-2000 divided by county population in 1995 and come from the 

Census 2000 PUMS dataset. By using migration data prior to 2003, we hope to eliminate the 

simultaneous causality problem between education spending and migration. The county dataset 

has at least two advantages over the state dataset. With 2957 observations, it is significantly 

larger than the state dataset containing only 192 observations. Plus, our county dataset contains 

migration variables for four distinct age groups. We believe that the biggest advantage of the 

county dataset is its ability to examine the heterogeneity of preferences for education across 

different elderly age groups, which is probably the most novel aspect of this paper. The county-

level analysis has its challenges as well as its benefits. In Poterba’s (1997, p.5) own words: 

                                                                                                                                                                                           
population shares aged 5 to 17. We do not find these specification differences alarming (our basic model passes link 
and Ramsey specification tests) and our findings resemble those of Poterba. 
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One drawback of analyzing state-level data on spending and demographics is that many of the 
critical decisions on spending levels are made by voters in local jurisdictions. State average 
spending levels therefore conceal substantial heterogeneity within states. Studying local 
jurisdictions brings a different set of empirical problems, because the demographic composition of 
a small community cannot be viewed as exogenous, but rather depends on the structure of local 
public spending. This can make it impossible to generalize from the local level relationship 
between demographic structure and spending patterns to broader based changes. 

 
We attempt to address a number of challenging econometric issues in our state and county level 

regressions. In addition to examining the heterogeneity of preferences for education spending 

across age groups, we improve upon earlier studies by subjecting our estimates to a variety of 

advanced econometric techniques at different levels of aggregation (i.e. state vs. county). To 

account for the potential influence of state-specific and time-specific factors and omitted 

variables on our estimates, we use state and time fixed effects modeled as ittiit στδε ++= . We 

also utilize a number of econometric techniques that address potential autocorrelation, 

heteroskedasticity, endogeneity, outlier, and spatial dependence issues that could make empirical 

estimates biased and inconsistent. 

 Spatial dependence is a serious concern in the type of data that involve interstate (or 

intercounty) comparisons. Cliff and Ord (1981) and Anselin (1988) pioneered these models to 

control for any direct influence of spatial neighbors, spillover effects, and externalities generated 

between cross-sectional observations. Failing to address spatial dependence may lead to biased, 

inefficient, and/or inconsistent coefficient estimates. Elhorst (2003) explains in detail the panel 

data spatial error and spatial lag models.4 Spatial dependence is likely to be present in situations 

when states, for example, engage in some form of “yardstick” competition in taxation or 

government spending on highways, healthcare, education, and other public services and 

infrastructure. States are often forced to compete for businesses and migrants in their quest for 

greater economic wealth and better standards of living. Much of the research on interstate 

competition has focused on taxation and to a much lesser extent, unfortunately, on government 
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spending.5 Yet, the limited number of existing studies on interstate competition in public services 

finds that states increase their spending on education, highways, healthcare, and welfare in 

response to spending increases by their neighbors.6 Given Case, Hines and Rosen’s (1993) 

finding of strategic spatial interaction in education spending between neighboring states, we 

argue that Poterba’s (1997) basic econometric model shown in equation (3) should be augmented 

with spatial effects. States or counties that engage in some sort of “copycat” behavior (a la 

Baicker 2005) or “yardstick” competition in education spending would be better characterized by 

a spatial lag model in which each state (county) spending depends on spending by its neighbors. 

Equation (4) features the spatial lag or spatial autoregressive model (SAM) specification that 

uses maximum likelihood (ML) estimation of the spatial lag component without which the 

ordinary least squares (OLS) estimates for β would be biased and inconsistent. 

ititititit

ititititYW
εββββ

ββββρβ
 +++ + +

 + ++ ++= 10

OUTMIG65INMIG65URBAN  NONWHITE
OWNERS OLD  KID )ED/CHILD(    ED/CHILD

8765

432itit  (4)  

Where W is the spatial weight (contiguity) matrix, ρ is the spatial dependence coefficient, and 

W(ED/CHILDit) is a spatially lagged explanatory variable. 

 A different type of spatial dependence could also be present in the relationship we are 

trying to estimate. Spatial dependence that occurs due to spatially correlated omitted variables, 

spatially correlated aggregate variables or spatially correlated errors in variable measurements is 

different from spatially lag dependence and should be modeled accordingly. Equation (5) 

                                                                                                                                                                                           
4 We use MATLAB routines of spatial error model (SEM), spatial autoregressive model (SAR), and spatial Durbin 
model (SDM) which can be downloaded from LeSage’s web site www.spatial-econometrics.com.  
5 For studies on interstate tax competition see Case (1993), Heyndels and Vuchelen (1998), Brueckner and Saavedra 
(2001), Buettner 2001, Revelli (2001), Rork (2003), and Conway and Rork (2004). 
6 Figlio et al. (1999), Saavedra (2000), and Baicker (2005) find evidence of competition in state spending on health 
and public welfare, while Case, Hines and Rosen (1993) find evidence of competition in aggregate as well as 
specific state expenditures on education, health care, and highways. On the contrary, Bruce et al. (2006) find 
evidence suggesting that states free-ride on positive spillover from infrastructure improvements by other states, 
which leads to a negative response to an increase in a neighbor’s spending on infrastructure. 
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features the spatial error model (SEM) specification that uses ML estimation of the spatial error 

term without which the OLS estimates of β would be inefficient.  

ititititit

ititititY
εββββ

βββββ
 +++ + +

 + ++ += 10

OUTMIG65INMIG65URBAN  NONWHITE
OWNERS OLD  KID     ED/CHILD

8765

432it   (5) 

All the variables here are as previously defined except for itε , which now equals to itit uW +ελ , 

where W is the spatial weight (contiguity) matrix, λ is the spatial dependence coefficient, and u is 

a vector of homoskedastic errors. We use a row-standardized contiguity matrix computed from 

latitude and longitude coordinates of geographic neighbors. In a row-standardized matrix the 

rows sum up to one and allows the spatial effects to be interpreted as the change in the “average” 

neighbor. Both spatial error (SEM) and spatial autoregressive lag (SAM) models are going to be 

estimated at the state and county levels via maximum likelihood. The next section presents our 

findings. 

 
 

4.  Empirical Results 
 
First, we present our state-level regression results, which are then followed by county-level 

results. Shown in Table 5 are our empirical estimates of the determinants of state K-12 education 

spending. The first (basic) OLS regression in Table 5 shows that higher real per capita income, 

homeownership rate, and share of population under 15 are positively and significantly related to 

education spending per pupil, while share of nonwhite population is negatively and significantly 

related to education spending per pupil. Although the coefficients for per capita income, 

homeownership, and nonwhite population have the expected signs, the coefficient for population 

under 15 does not, albeit being significantly different from zero only at 90% confidence level. 

Moreover, the coefficient for population 65 and over is positive, but not significantly different 

from zero. These results are not consistent with either the intergenerational conflict or Poterba’s 
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(1997) findings. As discussed previously, the estimates for these variables could be biased and 

inconsistent due to being significantly correlated with each other (see the correlation matrix in 

Table 6). Therefore, we argue that migration variables can be better suited for examining the 

intergenerational conflict. In fact, the first OLS regression in Table 5 yields the expected 

negative and statistically significant coefficient for in-migration rate for population 65 years old 

and over plus the expected positive and statistically significant coefficient for out-migration rate 

for population 65 years old and over. According to these estimates, an inflow of elderly migrants 

lowers, and outflow of elderly migrants raises, state K-12 education spending per pupil. These 

estimates are supportive of the intergenerational conflict presence in education financing. To 

provide robustness, we use several different estimation techniques.7

The second OLS regression in Table 5 incorporates two-way (state and time) fixed 

effects, which are preferred to a random effects regression as suggested by the Hausman test we 

performed. The two-way fixed effects OLS regression yields the expected signs for per capita 

income, population under 15 and over 65, and nonwhite population. However, the coefficients 

for population under 15 and over 65 are not significantly different from zero and the coefficient 

estimate for the elderly in-migration rate is now unexpectedly positive and statistically 

significant, while out-migration rate is positive and significant as expected. While the second 

(two-way fixed effects) regression improves upon the first one in terms of explanatory power, its 

estimates are likely to suffer from panel level heteroskedasticity and autocorrelation problems. 

We address these issues by specifying a panel specific heteroskedastic and first-order 

autoregressive error structure in the next regression (FGLS with two-way fixed effects) in Table 

5. The FGLS estimates, however, do not improve dramatically over the second OLS estimates 

and reveal the existence of the “same-sign” problem for the in and out migration rates, which 

                                                           
7 We perform link and Ramsey RESET tests of omitted variable bias and find that the basic model specification for 
the state level regression in Equation 13 was not rejected by both of these tests at the 95% confidence level. 
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should have the opposite signs according to the intergeneration conflict theory. The “same-sign” 

problem is not unique to our paper and has plagued past elderly migration studies such as Serow 

et al. (1986), Fournier et al. (1988), Conway and Houtenville (2001, 2003), and more recently 

Conway and Rork (2006).  

We attempt to address the “same-sign” problem in our next regression. This problem 

could be the result of the endogeneity bias. It could be argued that state fiscal policies that are 

favorable towards retirees, such as lower K-12 education spending, can induce more elderly 

migration that will be reflected in the share of elderly population. In turn, due to high rates of 

elderly electoral participation, retirees can have a significant influence on state fiscal policy in 

general and education spending in particular. This is analogous to the “which came first, chicken 

or the egg?” argument. Conway and Rork (2006) identify the same issue in their paper in which 

they argue that the percentage of elderly population could reflect past state tax policy and 

migration decisions. Like Conway and Rork (2006), we address this problem by using 10-year 

lags of elderly migration rates in the next FGLS regression.8 The second FGLS regression with 

two-way fixed effects (Table 5) and lagged migration rates yields the expected relationships 

between education spending and its determinants. Namely, per capita income, homeownership, 

and lagged elderly out-migration have a significant positive effect on K-12 education spending 

per pupil, while nonwhite population, population under 15 and over 65, and lagged elderly in-

migration have a significant negative effect. Not only shares of population under 25 and over 65, 

but also in and out elderly migration rates have the expected signs and statistical significance in 

                                                           
8 Although 10-year lags indicating the existence of 10-year relationships between migration rates and current 
education spending may appear to be far fetched, the fact that amenities, which are virtually fixed, rather than taxes 
(as found by Conway and Rork 2006) appear to be the most important determinants of migration should also give 
credence to their long run (10 and more years) determination of migration patterns and their effects on state policies. 
We also use more recent lags of migration rates in county regressions due to better data availability and find similar 
results. 
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this regression. This evidence provides strong support for the existence of the intergenerational 

conflict in education financing.9

In the next two regressions, with two-way fixed effects, we address the detected spatial 

error and spatial lag effects that could potentially bias previous non-spatial regression estimates. 

We present the regression results from SAM and SEM models for comparison purposes in Table 

5. Both SAM and SEM regressions indicate that there is significant spatial dependence of both 

types (ρ for spatial lag and λ for spatial error). As can be seen in Table 5, SAM and SEM 

regressions yield very similar estimates for most variables, but some differences exist 

nevertheless. For instance, the SAM regression yields a negative coefficient for population over 

65 (as expected), while the SEM regression yields a positive coefficient for the same variable. 

Both coefficient estimates are not significantly different from zero, however. The SEM 

regression also yields a negative and statistically significant (as expected) coefficient for the 

lagged elderly in-migration rate, while the SAM regression yields a negative but not statistically 

significant coefficient for the same variable. Finally, both SAM and SEM regressions yield a 

positive and significant coefficient for the lagged elderly out-migration rate. Although both SAM 

and SEM estimates appear to support the intergenerational conflict in education financing, we 

recommend using SAM for inference because it is more theoretically consistent with the 

intergenerational hypothesis examined in this paper and is favored over SEM by the Lagrange 

multiplier test. 

 In the next set of regressions (Table 7), we examine the effect of age heterogeneity in 

elderly migrants on 2003 education spending using county level data. We use in and out 

migration flows for the 1995-2000 period divided by 1995 county population for the following 

                                                           
9 We also run a dynamic Arellano-Bond GMM regression where in and out elderly migration rates are treated as 
endogenous variables and are instrumented with their own lags. The Arellano-Bond GMM regression yields a 
negative and significant coefficient for in-migration variable and positive but insignificant coefficient for out-
migration variable. These estimates agree with the intergenerational conflict in education financing argument. 
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age groups: 55-64, 65-74, 75-84, 85 and older. A priori, we expect the 55-64 and 65-74 age 

groups to have similar preferences for education spending since these two groups appear to be 

similar in their migration (see Table 8) and retirement decisions. These two age groups are more 

likely to have grandchildren (or even children) who are in primary and secondary schools 

compared to the older age groups (75 and over).  The older age groups may derive limited 

benefits from education and choose to directly not support education policy through voting or 

indirectly through fiscal pressure.  Therefore, the in-migrants in 55-64 and 65-74 age groups may 

support education spending more relative to in-migrants in 75-84 and 85 and over age groups.  

We expect in-migrants to have a negative effect and out-migrants to have a positive effect but 

with variation in magnitude and significance across age groups.  The expected overall effect of 

elderly migrants 65 years old and over is ambiguous due to the age heterogeneity in preferences 

for education among elderly migrants.  The overall effect depends on the relative strength of 

each age group, which makes our county-level regressions complimentary to our state-level 

regressions.  State level data can yield ambiguous results due to aggregation not addressing the 

issue of age heterogeneity in preferences for education spending among elderly migrants.10 We 

also address the potential endogeneity bias in our county level regressions by using more recent 

data than in the state regressions lagged migration rates, which occur prior to the 2003 share of 

elderly population and education spending per pupil figures. 

 We estimate the spatial lag (SAM), spatial error (SEM), and spatial Durbin (SDM) 

models to determine which ones are going to produce the most reliable estimates to be ultimately 

reported. All three models produce generally similar estimates for the elderly migration variables 

and show the existence of significant spatial dependence. However, not all three models are 

equally suited for inference. The SDM model, for example, is prone to multicollinearity problem 

                                                           
10 Poterba (1997) notes that cross-country data does not suggest an obvious relationship between the share of the 
elderly in the population and the share of government spending devoted to the elderly or to children. 
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in our case. The SEM model, which is estimated via maximum likelihood in this paper, can 

mistakenly misinterpret the spatial lag component ρ from the SAM model as the spatial error 

component λ from the SEM model (Anselin 1988, LeSage 1999). The SEM model may also 

produce results that are significantly different from the bench mark OLS results if the specified 

model has some omitted variable bias, which is the common problem in virtually all empirical 

studies. In our case, the SEM, SAM, and OLS estimates are fairly similar with respect to the 

main variables of interest. Moreover, our Lagrange multiplier tests have shown a preference for 

the SAM model, which is more prevalent in other empirical studies and more theoretically 

consistent with the intergeneration conflict hypothesis. Hence, we consider our SAM estimates to 

be most suitable for inference and present only SAM estimates in Table 7 due to space 

limitations. 

The first regression in Table 7 shows that in-migration of 55-64 year olds has a negative 

but insignificant effect on education county spending per pupil, while out-migration of 55-64 

year olds has a positive and significant effect.  This regression also shows that per capita income 

increases county education spending per pupil, while homeownership and urban population 

decrease it. Interestingly, population under 15 has a significant negative effect on education 

spending, but population over 65 has no statistically significant effect. The second regression in 

Table 7 shows the effect of elderly migrants ages 65 to 74 on education spending. This 

regression also shows that per capita income and out-migration of 65-74 year olds have a 

significant positive effect on education spending per pupil, while in-migration of 65-74 year 

olds, population under 15, homeownership, and urban population have a significant negative 

effect. The third regression featuring the migrants 75-85 years old shows similar results for all 

variables.  It should be noted that the negative in migration effect and the positive out migration 

effect becomes much larger for this age group (elasticities of 6.5% and 5.4%, respectively). The 
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next regression featuring the migrants 85+ years yields the same large negative and statistically 

significant result for in migration while out-migration is positive but insignificant. 

The last two regressions in Table 7 feature the average migration rates for 55+ and 65+ 

age groups. The results for the migrants 55 years old and over show that in-migration is 

negatively and significantly related to education spending, while out-migration is significantly 

and positively related to education spending per pupil.  The results for the migrants 65 years old 

and over yield no surprises and show that in-migrating retirees in that age group, on average, 

reduce education spending per pupil and out migration increases education spending per pupil. 

Contrasting the magnitudes of the coefficients for in-migration and out-migration rates across 

these two groups show that support for education spending appears to decrease with age. This 

result suggests that as retirees become older they prefer less K-12 education spending than 

younger retirees, supporting heterogeneity of preferences for education spending among retirees. 

 Altogether, our empirical analysis at the state and county level reveals significant 

evidence supporting the presence of intergenerational conflict in the U.S. K-12 education 

financing. Namely, it appears that elderly migrants generally lead to a reduction in education 

spending in the areas they move to. These results persist regardless of whether the net in-

migration or in and out migration rates are used in the regressions. However, we find that some 

control variables change their signs and significance levels across estimation techniques and 

datasets making their effects on education spending difficult to interpret. The negative 

coefficient for the homeownership rate, albeit being contrary to Poterba’s (1997) estimates, 

makes sense if one views the estimated equation as the demand schedule for education and the 

homeownership rate (in Poterba’s own view) as the after-tax price of education. In other words, 

our results suggest an intuitive relationship: if the tax price of education rises, quantity demanded 

falls. The share of nonwhites in total population shows up consistently negative and often 
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significant in our state level regressions, but is positive and insignificant in the county-level 

regressions. Finally, the negative coefficient for the share of urban residents in total population 

suggests that urban areas spend less on education perhaps due to economies of scale or lower 

transportation costs (which can account for a substantial portion of education expenditures). 

 

5. Concluding Remarks 

In this paper we reexamine intergenerational conflict in education financing using several 

advanced econometric techniques that are applied to U.S. state and county data on education 

spending and elderly migration. Our findings broadly support the existence of the 

intergenerational conflict in education spending and are robust to the existence of different forms 

of spatial dependence, heteroskedasticity, autocorrelation, outliers, endogeneity bias, fixed 

effects and random effects.  

The state-level regression results support the intergenerational conflict in the U.S. 

education financing found by Poterba (1997) and other researchers. Using a balanced panel of 48 

contiguous states for 1970, 1980, 1990, and 2000, we show that states with higher share of 

elderly population and higher elderly migration experienced lower education spending per pupil. 

In the next set of regressions, we examine the impact of age heterogeneity among elderly 

migrants on education financing using county-level data. We find that in-migration of age groups 

65 and older decreases education spending, but in-migration of people 75 years old and over 

decreases it at a much larger extent. The overall effect of retiree (65 years old and over) in-

migration on education spending per pupil is negative and significant. Likewise, the out-

migration of retirees (65 years old and over) has a positive effect on education spending per pupil 

that more than cancels out the negative in-migration effect. Our results also show that the 

magnitude of the negative effects on education spending from elderly in-migration and positive 
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effects from elderly out-migration increase with age.  These results broadly support the existence 

of a government failure where concentrated benefits shift towards the elderly due to migration 

patterns.    
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Table 1: Voting Statistics in November 2002, Total U.S. 

(in thousands) 
  Total Population 
  Reported Registered Reported Voted 
Age Total Number Percent Number Percent 
18 to 24 years 27,377 10,470 38.2 4,697 17.2 
25 to 34 years 38,512 19,339 50.2 10,450 27.1 
35 to 44 years 43,716 26,214 60.0 17,569 40.2 
45 to 54 years 40,043 27,006 67.4 20,088 50.2 
55 to 64 years 26,881 19,424 72.3 15,432 57.4 
65 to 74 years 17,967 13,681 76.1 11,339 63.1 
75 to 84 years 12,287 9,446 76.9 7,600 61.9 
18 years and over 210,421 128,154 60.9 88,903 42.3 
65 year and over 30,254 23,127 76.4 18,939 62.6 
85 year and over 3,640 2,573 70.7 1,729 47.5 
75 years and over 15,925 12,020 75.5 9,328 58.6 

Source: U.S. Census Bureau, Current Population Survey, November 2002. 
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Table 2: Summary Statistics for the Data Used in State Level Regressions 

 Observations Mean 
Standard 
Deviation 

Real education spending per pupil 192 5,048 2,069 
Real per capita personal income 192 20,630 6,279 
Share of population under 15 192 0.24 0.04 
Share of population 65 and over 192 0.12 0.02 
Homeownership rate 192 0.67 0.05 
Share of nonwhite population 192 0.14 0.10 
Share of urban population 192 0.68 0.15 
In-migration rate for population 65 and older 192 0.06 0.05 
Out-migration rate for population 65 and older 192 0.05 0.02 
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Table 3: Summary Statistics for the Data Used in County Level Regressions 

 Observations Mean 
Standard 
Deviation 

Education spending per pupil 2957 8,959 2,158 
Per capita personal income 2957 24,685 5,051 
Share of population under 15 2957 0.20 0.03 
Share of population over 65 2957 0.15 0.04 
Homeownership rate 2957 0.75 0.07 
Share of nonwhite population 2957 0.12 0.15 
Share of urban population 2957 0.40 0.30 
In-migration rate for population 65 and older 2957 0.0076 0.0067 
Out-migration rate for population 65 and older 2957 0.0076 0.0068 
In-migration rate for population 55-64 years old 2957 0.0072 0.0079 
Out-migration rate for population 55-64 years old 2957 0.0051 0.0054 
In-migration rate for population 65-74 years old 2957 0.0039 0.0040 
Out-migration rate for population 65-74 years old 2957 0.0034 0.0034 
In-migration rate for population 75-84 years old 2957 0.0023 0.0023 
Out-migration rate for population 75-84 years old 2957 0.0027 0.0028 
In-migration rate for population 85 and older 2957 0.0014 0.0015 
Out-migration rate for population 85 and older 2957 0.0016 0.0021 
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Table 4: Data Sources and Links 

Variables Source 
State education spending 
per pupil 

United States Census Bureau: Statistical Abstracts of the United States 
http://www.census.gov/prod/www/abs/statab.html

County education 
spending per pupil 

United States Census Bureau: Public Education Finance Report 2003 
http://www.census.gov/govs/www/school03.html

State per capita personal 
income 

Bureau of Economic Analysis 
http://www.bea.gov/bea/regional/spi/

County per capita 
personal income 

Bureau of Economic Analysis 
http://www.bea.gov/bea/regional/reis/

All state population data United States Census Bureau: Statistical Abstracts 
http://www.census.gov/prod/www/abs/statab.html

All county population 
data 

United States Census Bureau: Population Estimates 
http://www.census.gov/popest/estimates.php

State homeownership rate 
United States Census Bureau: Housing and Household Economic 
Statistics Division 
http://www.census.gov/hhes/www/housing/census/historic/owner.html

County homeownership 
rate 

United States Census Bureau: Population Estimates 
http://www.census.gov/popest/housing/files/HU-EST2004-CO.csv

State elderly migration 
rates 

United States Census Bureau: Statistical Abstracts 
http://www.census.gov/prod/www/abs/statab.html

County elderly migration 
rates (1995-2000) United States Census Bureau: 2000 PUMS 
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Table 5: Determinants of State K-12 Education Spending per Pupil  

(Standard errors reported in parenthesis) 
Estimation OLS OLS FGLS FGLS SAM SEM 
Two-way fixed 
effects - Yes Yes Yes Yes Yes 

Constant -3.435*** 
(0.690) 

-0.991*** 
(2.32) 

-3.017*** 
(0.899) 

-2.791***  
(0.946) - - 

 
Real per capita 
personal income 

1.254*** 
(0.076) 

0.782*** 
(0.228) 

0.952*** 
(0.095) 

0.836*** 
(0.093) 

0.857*** 
(0.087) 

1.100*** 
(0.093) 

Share of population 
under 15 

0.015* 
(0.187) 

-0.955 
(0.372) 

-1.072 
(0.138) 

-1.777***  
(0.127) 

-1.581*** 
(0.243) 

-1.680*** 
(0.265) 

Share of population 
over 65 

0.199 
(0.086) 

-0.305 
(0.186) 

-0.269 
(0.079) 

-0.581*** 
(0.086) 

-0.177 
(0.145) 

0.004 
(0.157) 

Homeownership 
rate 

0.092* 
(0.150) 

-0.126 
(0.423) 

-0.371 
(0.158) 

0.224 
(0.285) 

-1.210*** 
(0.427) 

-1.419*** 
(0.462) 

Share of nonwhite 
population 

-0.008*** 
(0.012) 

-0.063*** 
(0.037) 

-0.051*** 
(0.015) 

-0.048**  
(0.021) 

-0.025 
(0.048) 

-0.003 
(0.057) 

Share of urban 
population 

-0.136 
(0.052) 

0.185 
(0.123) 

0.174 
(0.049) 

0.309***  
(0.044) 

0.368*** 
(0.095) 

0.402*** 
(0.100) 

In-migration rate, 
population over 65 

-0.034*** 
(0.022) 

0.048** 
(0.057) 

0.022** 
(0.030) - - - 

Out-migration rate, 
population over 65 

0.068*** 
(0.043) 

0.071* 
(0.093) 

0.024* 
(0.038) - - - 

Lag of in-migration 
rate, population 
over 65 

- - - -0.110*** 
(0.041) 

-0.091 
(0.060) 

-0.125** 
(0.062) 

Lag of out-
migration rate, 
population over 65 

- - - 0.299*** 
(0.040) 

0.344*** 
(0.071) 

0.348*** 
(0.076) 

ρ - - - - 0.227*** 
(0.026) - 

λ - - - - - 0.263*** 
(0.100) 

R2 0.89 0.96 - - 0.95 0.95 
Observations 192 192 192 144 144 144 
Notes: Dependent variable: education spending per capita in real dollars. Significance level: *** at 1%, ** at 5%, * 
at 10%. The sample is a balanced panel of 48 continental United States (excluding Alaska and Hawaii) for the years 
1970, 1980, 1990, and 2000. All variables are in logarithms. Robust standard errors are used to control for 
heteroskedasticity. Robust and median regressions that are resistant to outlier bias show similar results. The 
Hausman test rejected the random effects estimator in favor of the fixed effects estimator. In and out migration lags 
are lagged in 10-year intervals due to data availability. Both spatial lag (SAM) and spatial error (SEM) models are 
estimated using maximum likelihood, where ρ and λ are spatial lag and spatial error components, respectively. 
Using net in-migration rates instead of in and out migration rates yield similar results. 
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Table 6: Correlation Matrix for State Regression Variables 

  

Education 
exp./pupil Income  

Share of 
15 and 
younger 

Share of 
65 and 
older 

Nonwhite  Home 
owner Urban  

In-
migration  
65+  

Out-
migration  
65+ 

Education exp./pupil     1     
Income 0.9329* 1        

      

     

     
    

   

Share of people 15 
and younger -0.7821* -0.7953* 1

Share of people 65 
and older 0.5017* 0.4428* -0.7082* 1

Nonwhite -0.0376 -0.0897 -0.021 0.2042* 1
Home owner 0.2146* 0.2963* -0.2511* -0.0359 -0.2121* 1
Urban 0.2290* 0.3470* -0.0704 -0.072 -0.2646* 0.2679* 1
In-migration 65+ 0.0052 0.0507 -0.0496 -0.1669* 0.0039 0.0432 0.1448* 1  
Out-migration 65+ 0.2014* 0.2167* -0.0662 -0.1580* -0.2336* -0.1554* 0.1608* 0.5945* 1

 Notes: All variables are in logarithms. * denotes statistical significance at 5 percent. 
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Table 7: Determinants of County K-12 Education Spending per Pupil 
(Standard errors reported in parenthesis) 

Estimation SAM SAM SAM SAM SAM SAM 
Migration Ages 55-64 65-74 75-84 85+ 55+ 65+ 

Constant 1.115*** 
(0.172) 

1.099*** 
(0.170) 

1.043*** 
(0.167) 

1.058*** 
(0.168) 

1.235*** 
(0.179) 

1.089*** 
(0.169) 

Per capita personal 
income 

0.122*** 
(0.017) 

0.125*** 
(0.017) 

0.131*** 
(0.017) 

0.130*** 
(0.017) 

0.121*** 
(0.017) 

0.129*** 
(0.017) 

Share of population 
under 15 

-0.177*** 
(0.028) 

-0.175*** 
(0.027) 

-0.173***
(0.027) 

-0.171***
(0.027) 

-0.193*** 
(0.027) 

-0.179***
(0.027) 

Share of population 
over 65 

-0.013 
(0.014) 

-0.014 
(0.014) 

-0.020 
(0.014) 

-0.011 
(0.015) 

-0.022 
(0.014) 

-0.018 
(0.015) 

Homeownership rate -0.185*** 
(0.039) 

-0.187*** 
(0.039) 

-0.182***
(0.038) 

-0.197***
(0.038) 

-0.151*** 
(0.039) 

-0.176***
(0.039) 

Share of nonwhite 
population 

0.002 
(0.002) 

0.002 
(0.002) 

0.002 
(0.002) 

0.002 
(0.003) 

0.003 
(0.002) 

0.003 
(0.003) 

Share of urban 
population 

-0.124*** 
(0.019) 

-0.123*** 
(0.019) 

-0.116***
(0.018) 

-0.126***
(0.018) 

-0.119*** 
(0.019) 

-0.115***
(0.019) 

In-migration rate -0.811 
(0.601) 

-2.050** 
(1.018) 

-6.547***
(1.575) 

-4.200** 
(1.944) 

-0.036*** 
(0.006) 

-2.645***
(0.661) 

Out-migration rate 1.791** 
(0.852) 

2.928** 
(1.191) 

5.385*** 
(1.334) 

0.535 
(1.430) 

0.038*** 
(0.007) 

2.646*** 
(0.658) 

ρ 0.705*** 
(0.002) 

0.704*** 
(0.002) 

0.703*** 
(0.002) 

0.705*** 
(0.002) 

0.692*** 
(0.002) 

0.699*** 
(0.002) 

R-squared 0.10 0.11 0.11 0.10 0.14 0.12 
Notes: Dependent variable: education spending per pupil in 2003. Significance level: *** at 1%, ** at 5%, * at 10%. 
The sample consists of observations for counties from 48 continental United States (excluding Alaska and Hawaii) 
and District of Columbia in 2003. Missing and incorrect data observations were dropped from the sample resulting 
in a total of 2952 observations. All variables are in logarithms. County in and out migration rates are computed by 
dividing respective migration flows during 1995-2000 by county population in 1995. By using earlier years for our 
migration variable we essentially lag our migration rates in order to eliminate potential simultaneous causality 
problem from 2003 education spending. The spatial lag model (SAM), also known as spatial autoregressive model 
or SAR, is estimated using maximum likelihood, where ρ is the spatial lag component. Using net in-migration rates 
instead of in and out migration rates yield similar results. 
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Table 8: Correlation Matrix for County Regression Variables 

  

Education  
exp./pupil Income 

Share of 
people 15 
and 
younger 

Share of 
people 
65 and 
older 

Nonwhite Home 
owner Urban 

In-
migration 
(55-64) 

In-
migration 
(65-74) 

In-
migration 
(75-84) 

In-
migration 
(85+) 

In-
migration 
(65+) 

Education  exp./pupil 1  
Income 0.2592* 1  
Share of people 15 
and younger -0.2015* -0.03 1  

Share of people 65 
and older 0.1003* -0.1145* -0.5842* 1  

Nonwhite  -0.1610* -0.0400* 0.3114* -0.3896* 1
Home owner -0.0676* -0.2081* -0.1606* 0.3229* -0.3217* 1  
Urban 0.0222 0.4231* 0.2983* -0.4323* 0.3115* -0.5696* 1
In-migration (55-64) 0.0064 -0.0532* -0.1688* 0.1183* -0.0426* 0.1793* -0.1666* 1
In-migration (65-74) -0.0076 -0.0477* -0.1724* 0.1817* -0.0400* 0.1642* -0.1200* 0.8919* 1
In-migration (75-84) -0.0172 0.0457* -0.1161* 0.1332* -0.0537* 0.0996* -0.0405* 0.6944* 0.7234* 1
In-migration (85+) -0.0036 0.0424* -0.1273* 0.1983* -0.1082* 0.0716* -0.0898* 0.3439* 0.3477* 0.4368* 1
In-migration (65+) -0.0114 -0.0030 -0.1729* 0.2006* -0.0674* 0.1495* -0.1066* 0.8553* 0.9312* 0.8818* 0.5889* 1
Out-migration (55-64) 0.0670* 0.0753* -0.0356 -0.0075 -0.0412* -0.0020 -0.0176 0.7573* 0.7029* 0.7091* 0.3453* 0.7473*
Out-migration (65-74) 0.0679* 0.0037 -0.1271* 0.1450* -0.0902* 0.0821* -0.0978* 0.7167* 0.6936* 0.6760* 0.3218* 0.7249*
Out-migration (75-84) 0.0550* -0.0445* -0.1965* 0.2718* -0.1367* 0.1346* -0.1931* 0.6618* 0.6543* 0.6143* 0.3126* 0.6777*
Out-migration (85+) 0.0095 -0.0698* -0.1565* 0.2506* -0.1296* 0.1203* -0.1949* 0.3340* 0.3324* 0.3344* 0.1929* 0.3599*
Out-migration (65+) 0.0595* -0.0382* -0.1931* 0.2624* -0.1417* 0.1339* -0.1891* 0.7339* 0.7188* 0.6942* 0.3493* 0.7526*

 

  

Out-
migration 
(55-64) 

Out-
migration 
(65-74) 

Out-
migration 
(75-84) 

Out-
migration 
(85+) 

Out-
migration 
(65+) 

Out-migration (55-64) 1         
Out-migration (65-74) 0.7761* 1       
Out-migration (75-84) 0.6629* 0.6591* 1     
Out-migration (85+) 0.3233*      0.3189* 0.4499* 1
Out-migration (65+) 0.7606*     0.8687* 0.8819* 0.6546* 1

Notes: All variables are in logarithms. * denotes statistical significance at 5 percent. 
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